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FOR SECOND ORDER DIFFERENTIAL EQUATIONS
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ABSTRACT. By utilizing a combination of properties of the consequent mapping with
the Brouwer’s fixed point theorem we obtain existence results for the nearly-periodic
boundary value problem

z" = f(t,z,2'), te€[0,1]

z(1) = Qg '=(0), z' (1) = Q7 '2'(0),

where Qp,Q1 are complex valued nonsingular matrices.

1. INTRODUCTION

Let C™ denote the n—dimensional complex Euclidean linear space and let I
be the interval I := [0,1]. Let Q be a convex, open subset of the product space
C" xC™ and let f : I x Q2 — C™ be a continuous function. In this paper we provide
sufficient conditions for the existence of a (complex valued) solution z of the vector
differential equation

2" = fltoa), tel (1.1)

satisfying the conditions
z(1) = Qy'z(0), 2'(1) = Q;1z'(0), (1.2)

where Qg, Q1 are nonsingular » X n complex valued matrices. The problem under
investigation is inspired by the periodic problem (in the real case) concerning (1.1),
for which the literature is volunimous, as well as by those problems presented in [2,
4]. In [2] the existence of a Sturm-Liouville boundary value problem is investigated,
by transforming it into the equivalent form Lz = Gz and then applying the Leray-
Schauder’s continuation theorem. Also we would like to refer to [5, p. 338], where
by using the Wazewski’s method it was shown that, if in (1.1) the function f satisfies
the well known Hartman’s condition for all ¢ > 0, z and y # 0, then there is a time
to > 0 such that z(¢).z(¢) is nonincreasing on ¢ > fy, where z is the solution of (the
real version of) equation (1.1). For a two-point boundary value problem concerning
a more general differential equation in a Hilbert space discussed by the authors in
[7] the Schauder’ s fixed point theorem is used. Notice that in [4], the existence
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of a solution x of the problem is investigated, where the nonsingular n x n-square
matrices Qo and @Q; satisfy the inequalities

2.QoQ7'y <0 and z.(Qo + Q7 1)y <0, (1.3)

for all vectors z,y € R™ with 2.y < 0 and the matrix Qo is orthogonal. (The dot
denotes the inner product in the real Euclidean space.)

The literature shows a great number of papers refered to both the scalar and the
vector case for the problem (1.1),(1.2), see, e.g., [1, 9, 10, 11] and the references
therein. In [3] Erbe by using a technique, which involves a direct application of
properties of Leray-Schauder degree, instead of (1.3), he used the following condi-
tion:

There is a p > 0 such that @Q; = uQo.

A more general situation of the problem is discussed by the authors in [8]. In this
paper we do use of the Hartman’s condition and give information on the existence
of solutions by combining properties of the consequent mapping with the Brouwer’s
fixed point theorem. Motivated from Erbe’s technique, instead of the orthogonality
condition on Qo, we assume that the matrices Qo, @1 satisfy the relation

Q11 < 1Qoll = Q31 =1, (1.5)

where ||.|| stands for the norm in the n X n complex matrix space congruent to the
euclidean norm of the complex n-dimensional space C™, the norm which equals to
the greatest absolute value of its eigenvalues.

2. PRELIMINARIES

Let J be a fixed interval of the real line such that 7 ¢ J. Consider equation
(1.1) associated with the initial conditions

(r2(r),2'(r)) = (,§,n) == P eI xQ, - (21)

where the function f : J x @ — C” is continuous. Let X (P) be the family of all
solutions of (1.1),(2.1). If z is such a solution, we shall write I, to denote the
connected set of all existence times of z lying in I and such that 0 € I.. We let
D :=J x Q and consider this set as a subset of the euclidean space R x C*. Take a
subset W of D such that both the sets ini(W) and D —cl(W) are nonempty. (Here
int(W) denotes the interior and cl(W) the closure of the set W.) Later on the set
W will be completely definite.

Next we recall some classical definitions. Given a 7 € (0, 1], a point P := (7,&,n)
of the boundary of W (if such exists) is a point of egress, if, given any z € X(P),
there is an € > 0 such that

{(t, z(t),2'(¥)) : t € (T — €, 7)} C int(W).

Also, if 7 < 1, then P is a strict egress point, if, given any x € X (P), there is an
€ > 0 such that

{t,z®),2'(t)) :t e (r,7+€)} C D —cl(W).
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(See, e.g., [6].) We denote by W* and W*®, respectively, the sets of egress and
strict egress points of W.

A point P of the boundary of W is a consequent point of Py := (70,&0,M0), if
there is a solution passing from both these points and such that

{(t,z(t),2'(¥)) : t € (10,7)} Cint(W).

The set of all consequent points of Py will be denoted by C(P), while the so defined
(set-valued) mapping
C:N(W) - WwWe

is the consequent mapping. Here the symbol N,(W) stands for the set of all points
of W whose the sets of the consequent points are nonempty.

Given a time 7 € (0, 1] we say that a point P := (1,&, ) of the boundary of W
is a point of ingress of W, if given any solution € X(P) there is an ¢ > 0 such
that

{(t,z(t),z'(t)) : t e (1 —¢,7)} C D —cl(W).

Also, in case 7 < 1, the point P is a strict ingress point, if given any z € X(P),
there is an € > 0 such that

{(t, 2(t),2' () : t € (1,7 + €)} C int(W).

We denote by W* and W, respectively, the sets of ingress and strict ingress points
of W.

It is clear that, if uniqueness of the solutions holds, then the consequent mapping
is a single valued function.

Now assume that X, Y are topological spaces and let F' be an abstract set-valued
mapping which maps the points of X to nonempty compact subsets of Y. Then F'
Is upper-semicontinuous (usc) at a point o of X, if for any open subset A of F(zo)
there exists a neibghborhood U of g such that the set F(z) is a subset of A for all
points z of U.

The following lemmas give sufficient conditions for the upper semi-continuity of
the consequent mapping and some useful properties for a class of usc mappings.
Notice that the consequent mapping C is included in this class (see, e.g., [6]).

Lemma 2.1. If for any point P of S.(W) all functions in X (P) egress strongly
from W, then the consequent mapping C is usc at any point P and the image C(P)
18 a continuum subset of the boundary of W.

Lemma 2.2. Let X,Y be metric spaces and let F : X — 2Y be a usc set-valued
mapping. If A is a continuum subset of X such that for every x € A the image
F(x) is a continuum, then the image F(A) := U{F(x) : 2 € A} is also a continuum
subset of Y.

3. THE MAIN RESULTS

This section is devoted to the main results of the paper. We shall denote by z the
conjugate of the complex number z and by Re[z] its real part. Also the *typical”
inner product-in the n-dimensional space will be denoted by < .,. > .
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Assume that the open set 2 has the property that there is a real number R > 0
such that
Vi=U{V(@):telI}CIx,

where for each ¢ € I we have set
V() ={t,z,y):|z]| <R, y eC"}.

In the sequel a bar over a matrix will denote the matrix with elements the
complex conjugates of the elements of the original matrix.

Theorem. Consider equation (1.1) where the continuous function f : J x Q — C™
satisfies the following conditions:
(F1) For any t € I and (t,z,y) in the boundary of V(t) the implication

if Re[< Z,y>] =0, then Re[<Z, f(t,z,y) > +|y|*] #0

holds.
(F») There is a positive real number M such that any solution z € X (V(0)) with
|z'(0)] < M, satisfies the inequality

|t} < M,

for all t € I, such thatt > 0 and (¢, z(t),2'(t)) € V.
Also assume that the nonsingular n x n complex matrices Qo, Q1 are such that
(M) condition (1.5) is satisfied, and
(M) for all z,y € C* with

Re[< Z,y >] > 0,

it holds B
Re[< Q7'%,Q7y >] > 0,

Then the problem (1.1),(1.2) admits a solution x(t),t € I such that
lz(®)] < R,

forallteI.

Proof. First of all we would like to notice some remarks:

(a) If we restrict the function f on a compact subset Z of J x Q containing the
set V' in its interior, we can approximate it uniformly on the set Z by a sequence
of functions fx(,z,y), which are at least C! on Z. For such functions we have
uniqueness of solutions passing through points at least of the interior of Z. So, if we
show the existence of a sequence of solutions (zz) of the corresponding problems,
with initial conditions in V(0), then these solutions are uniformly bounded by
R, their first derivatives by M and their second derivatives by the real number
sup{|f(t,z,y)| : ({,z,y) € Z}. Hence, by the Arzela-Ascoli’s theorem a limiting
point of this sequence exists which (according to continuous dependence arguments)
will be a solution of the original problem.
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(b) Let K be a compact subset of C* x C* containing the set
E:={(z,y) eC*"xC":|z| <R, |y| < M}.
Define the continuous real valued function
S: (A z,y) = Re[< Q5 'z, Q7 'y >]
and observe that, because of (M), there is a § > 0 such that
S\ z,y) >0,

for all (A, z,y) € [0, 6] x K. Also, multiplying the matrix Qo by the complex factor
e*?, for some real A € (0, §), we can assume that the unit is not an eigenvalue of the
matrix (Jo. Indeed, let us suppose that for each such A, for which the matrix Qg
does not have the unit as its eigenvalue, a solution z, exists for the corresponding
problem. (Notice that each matrix of the form e**Qq satisfies, also, condition
(My).) Then, as in case (a) above, we can get an accumulation point (as the real
parameter A tends to zero), which by continuity, finally, will be a solution of the
original problem.

Now consider the set W of all points (¢, z,y) of V with |y| < M and let Wy be
its cross section at £ = 0, i.e. the set Wy := {0} x E. Let P be a point in Wy and
let # be the unique solution passing from P,. Then we distinguish two possibilities:

(#) The set I is a subset of I and it holds

lz(®)| < R,

for all £ € [0,1). Then we let s := 1. It is obvious that there is a point P € V(1)
guch that (1, 2(1),2(1)}=P.
(it) Either
[=(0)] = R,

or there is a time s € I such that
|z(s)] = R and |z(%)] < R,

for all ¢ € [0, ).
In both these cases, from (F>) we have

' (t)] < M,

for all £ € (0, s).

We claim that the point P := (s,z(s),2'(s)) is a point of strict egress of the set
W. Indeed, in case (i) this fact is obvious. So, consider case (ii), where we can also
assume that s < 1.

Define the real valued function

¢(t) :==|z(t)|®* — R?, tel,
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and observe first that
#(s) = 0.

If
¢'(s) = 2Re[< Z(s),2'(s) >] > 0,

then, clearly, P € W*¢, in case s > 0. If
@'(s) >0, and s =0,
then
P =Pyc W,
Notice that in this case we have
|z(s)| = [(0)| = |xo| = R.
Then we can set
C(P) = PO:

because the point P might be considered as the consequent point of itself.
If .
¢'(s) <0,

then P is a point of strict ingress of W. Clearly, this fact cannot be true in case
§>0.If
s =0 and ¢'(0) <0,

then the solution z must satisfy either (i), or (ii) above (for a certain new time
5>0).
These arguments lead us to discuss only the case

§>0 and ¢'(s) =0.

The later means that
Rel< #(8),2/(8) >] =0

and, so, from (F})
¢"(s) = 2Re[< %(s), f(s,2(s),2'(s)) > +la'(s)[?] # 0.

The case
¢"(s) <0

is impossible. If
¢"(s) >0,

then we have
o(t) >0, for all t € (s,5+¢),

for some € > 0. Thus P € W*¢. Therefore our claim is true.
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So far we have proved that
C(Po) = P = (s,2(s),2'(s))-

From (1.5) we get
|Qoz(s)] < l|Qolllz(s)] =1.R=R (3.1)

and
|@12'(s)] < [|Qullz'(s)| < 1.M = M. (3-2)

Next, consider the set E as above and define the mappings
H:(z,y) = (0,2,9): E—V(0) and h:(,2,9) = (z,9):V = B,
as well as the matrix

Q := diag[Qo, Q1]

Then, from Lemmas 2.1, 2.2, our remark (a) (in the beginning of the proof) and
relations (3.1), (3.2), we conclude that the function

T(z,y) = QnMC(H(z,y))): E— E

maps continuously the closed, convex, bounded set E into itself. Hence, by the
Brouwer’s fixed point theorem it follows that there is a point (xo,%0) € E such that

T(xo,y0) = (%o, Y0)-

This means that there is a solution z such that (2(0),2’(0)) = (xo,%0) € E and
Qoz(s) =zo and Q12'(s) = yo, (3.3)

for some s € [0, 1].

To finish the proof, it is enough to show that (3.3) is true only for s = 1. Indeed,
to prove it, we assume, on the contrary, that s € [0,1). If s = 0, then, as we noticed
above, C(P) = Pp and so, it holds z(s) = zp and z'(s) = yo. Hence from (3.3) we
get Qozo =.xo, Where, notice that |zo| = R > 0. This is impossible, because, from
our remark (b) above, the unit is not a eigenvalue of the matrix Q.

Let us assume that s € (0,1). We distinguish two cases:

Case A. Suppose that

|zo| = |z(s)| = R.

Then, by the definition of the consequent mapping, the initial point Py must be an
ingress point of W, so

¢'(0) = 2Re[< Z(0),2'(0) >] = 2Re[< Zo,y0 >] < 0. (3.4)
For the same reason the consequent point P is a point of egress of W, hence

¢'(s) = 2Re[< Z(s),2(s) >] > 0.
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Then from (3.3) we derive
Re[< Q7 '%0), (Q1 o) >] = Re[< Z(s),a'(s) >] > 0.

This fact together with (3.4) contradict to (F).
Case B. Suppose that
| |zo| < R = |z(s)|.

Then we get
R = |z(s)| = |Q7 'zol < IQ5 [llzo| < L.R= R,

a contradiction. This completes the proof of the theorem. O

Remark. Hypothesis (Fz) holds, if, for instance, we impose a Nagumo type
condition to the function f(t, z,%), namely, if we assume that f(¢,z,7) has at most
a quadratic growth rate in the argument .
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